Acute Hypercarbia: Causes / Effects

Anesthetic Pearls: Anesthetic Implications and Management of Hypercarbia

Hypercarbia is a PaCO, >45 mmHg

Increased PaCO₂ is secondary to inadequate ventilation and / or increased CO₂ production.

Decreased Ventilation / Elimination	Increased CO ₂ Production
CNS Depression	Exogenous CO ₂ (laproscopy)
Neuromuscular depression	Malignant hyperthermia
Rebreathing	Reperfusion
(stuck circuit valve, absorbant exhausted)	(limb after tourniquet, AAA unclamp)
Inadequate minute ventilation	Sepsis
Increased airway resistance	Fever
COPD	TPN
V/Q mismatch (PE)	Shivering
	Bicarbonate administration

Intra-Op Signs: Flushed skin, cardiac dysrythmias (PVC / PAC, tachycardia), HTN, depressed respirations, coma

CNS: ↑ CBF, narcosis if PaCO₂>90, mild ↑ PaCO₂ leads to ↑ EEG frequency, ↑↑↑ CO₂ leads to ↓ frequency & amplitude of the EEG (CNS depression, coma)

Cardiovascular: C0O₂ is direct depressant of CV system but activates sympathetic nervous system. Moderate ↑ PaCO₂ leads to ↑ BP & ↑ CO (cardiac output) while ↑↑↑ PaCO₂ leads to ♥ CO / BP / HR. Arrhythmias occur with hypercarbia (especially if combined with halothane anesthetic).

Respiratory: ↑ respiratory response (↑ MV) until PaCO₂ approximately 100, at that point any further increase in PaCO₂ leads to ventilatory depression. Hypercarbia leads to ↑ PVR (pulmonary vascular resistance), Right-shift of the O₂ dissociation curve (less affinity of hemoglobin for oxygen).

GI: Direct effect is an increase of hepatic and portal venous blood flow. But, if the sympathetic nervous system is not completely blocked during general anesthesia, increased PaCO₂ leads to splanchnic nerve stimulation with vasoconstriction and decreased hepatic blood flow.

Metabolic: ↑ PaCO₂ leads to ↑ norepinephrine & epinephrine. ↑ PaCO₂ leads to ↓ pH which causes ↑ K+.

MAC: No change with PaCO₂ between 20-100. Very high PaCO₂ (> 100) causes anesthesia / narcosis & decreases MAC (PaCO₂ of ~ 250=1 MAC).

Local Anesthetics: Weak bases that exist in equilibrium $[BH^+ <=> (B + H^+)]$. If hypercarbia present, Ψ pH and more exists in the BH+ (ionized) form that does NOT easily cross membranes therefore causing decreased activity of the local anesthetic.

Management: First, the arterial pH must be evaluated to determine if the elevation in $PaCO_2$ is acute or chronic. A normal pH indicates a chronic condition (COPD), while a pH < 7.35 suggests an acute process with concomitant respiratory acidosis. The $EtCO_2$ can be used roughly to follow $PaCO_2$. Discrepancies arise due to V/Q mismatching. If physiologic dead space increases (extremely high V/Q ratio, areas ventilated but not perfused), the $EtCO_2$ will be much lower than the $PaCO_2$ ($EtCO_2$ - $PaCO_2$ gradient). This situation occurs with pulmonary embolism (air / amniotic fluid / fat embolism) and cardiac arrest.

- 1. Ensure adequate oxygenation (Sat, PaO₂)
- 2. Ensure adequate ventilation
 - A. Spontaneously ventilating patient: Check patent airway, ? intubate & control ventilation
 - B. Mechanically ventilated patient: Increase MV, check equipment (valves, absorber, vent)
 - C. Check the inspired CO₂ level: More than 1-2 mm Hg inspired CO₂ indicates rebreathing of CO₂ due to incompetent valve in breathing circuit, exhausted soda lime (increase the fresh gas flow to convert the circle system to a semiopen system, the inspired CO₂ should drop markedly), or administration of exogenous CO₂.
- 3. Obtain ABG to confirm hypercarbia
- 4. Look for causes of increased CO₂ production (fever, sepsis, MH)
- 5. If hypercarbic in PACU with extubated patient: Check residual neuromuscular block, consider Naloxone +/- Flumazenil to reverse opioid / benzodiazepine effects. ? re-intubate & control ventilation